Archive - 2024

An archive of material I went through this year

Yukihide Takahashi

Youtube #

playlists #

  • MIT 18.06 Linear Algebra, Prof. Gilbert Strang, MIT, link
  • MIT 18.065 Matrix Methods In Data Analysis, Signal Processing, and Machine Learning, Prof. Gilbert Strang, MIT, link
  • Math 131 Real Analysis, Prof. Francis Su, Harvey Mudd College link
  • EE364A Convex Optimization, Prof. Stephen Boyd, Stanford University, link

videos #

  • Grant Sanderson, Harvey Mudd Commencement Speech 2024, link
  • Alan Edelman on Julia, at TEDxMIT 2020, link
  • Git Internals by John Britton of GitHub, CS50 Tech Talk, link
  • Advice from the Top 1% of Software Engineer, Jean Lee, link

channels #

  • MIT OpenCourseWare, link

Lots of lecture series. Free knowledge!

  • Stanford Online, link

Same as above.

Explanation of math-y concepts with pretty animations.

Latest tech news (gossip).

Books #

  • Introduction to Linear Optimization, Dimitris Bertsimas, John N. Tsitsiklis, link

  • Differential Equations with Applications and Historical Notes, George F. Simmons, link

  • Linear Algebra and Learning from Data, Gilbert Strang, link

Articles #

  • Understanding Logistic Regression, Arun Addagatla, link

  • Maximum Likelihood Estimation in Logistic Regression, Arun Addagatla, link

  • Support Vector Machines — Soft Margin Formulation and Kernel Trick, Rishabh Misra, link

  • Activation Functions Demystified, Om Pramod, link

  • Batch Norm Explained Visually — How it works, and why neural networks need it, Ketan Doshi, link

  • Inspecting Layer Normalization In Transformers, Ryan Partidge, link

  • What is Memoization?, Geeks for geeks, link

  • The Math Behind "The Curse of Dimensionality", Maxime Wolf, link